

VRML Extensions

Supported by Cortona3D Viewer

© 2017 Parallel Graphics Limited t/a Cortona3D

2

Table of Contents

Introduction ... 3

Advanced Visual Effects .. 3
DirectX 9.0 Shaders ... 3
CompositeTexture .. 5
BumpMap ... 7
MipMap .. 8
CubeEnvironment .. 9
SphereEnvironment ... 10
AdvancedAppearance ... 10
TextureTransform .. 14
SFVec2f Interpolator .. 14
GradientBackground .. 15

Geometry .. 16
Splines ... 16
NURBS ... 20
CortonaExtrusion ... 23

Layers and Rendering ... 24
Layers and 2D Nodes ... 24
Panel and HTMLText ... 31
OrderedGroup ... 33
ZGroup ... 33

Text .. 34
Three-Dimensional Text .. 34
FontStyle .. 36

Mouse and keyboard input.. 37
Drag & Drop Handling .. 37
Keyboard Input ... 38

Movies .. 40
FlashMovie .. 40
QuickTime MOV Movies as Source for MovieTexture 43
Flash animations as source for MovieTexture ... 44
Animated GIF Files as Source for MovieTexture ... 44

Behaviour ... 45
Object-To-Object Collision Detection Interface ... 45
NavigationInfo... 47
Interpolator Nodes in Cortona ... 49
TransformSensor ... 55
ViewportSensor ... 56

X3D Nodes .. 57
EventUtilities ... 57
Inline Extension ... 59

3

Introduction

The Visual Reality Modelling Language has a variety of powerful mechanisms
that provide the content creators with almost unlimited capabilities of

building 3D content. However, in certain cases, the implementation of the
content creator's intent with the use of scene elements described in the

VRML97 Specification can lead to a large file size, low performance of the
VRML browser, etc. To broaden capabilities of content creators

ParallelGraphics introduced support of a number of above elements as VRML

extensions in Cortona3D Viewer. These extensions were implemented as
new extension nodes or extended functionality of standard VRML nodes.

Advanced Visual Effects

DirectX 9.0 Shaders

Cortona3D Viewer supports DirectX 9.0c. The latest version of DirectX is

available at
http://www.microsoft.com/downloads/en/resultsForCategory.aspx?displaylang=en&categor

yid=2

Please make sure you have a DirectX 9.0 compatible graphics adapter with
hardware shader support.

The implementation of programmable shaders corresponds to the X3D

Programmable Shader Proposal. The supported shader languages are High
Level Shader Language (HLSL) and nVidia Cg shading language. DirectX 9.0

FX format is supported.

Three new nodes were added to Cortona3D Viewer for shader support:
ShaderAppearance, VertexShader and FragmentShader.

ShaderAppearance

EXTERNPROTO ShaderAppearance [

 exposedField SFNode fillProperties NULL

 exposedField SFNode fragmentShader NULL

 exposedField SFNode lineProperties NULL

 exposedField SFNode material NULL

 exposedField SFNode texture NULL

 exposedField SFNode textureTransform NULL

 exposedField SFNode vertexShader NULL

]

[

 "urn:inet:parallelgraphics.com:cortona:ShaderAppearance"

“http://download.cortona3d.com/public/extensions/extensions.wrl#

ShaderAppearance

]

http://www.microsoft.com/downloads/en/resultsForCategory.aspx?displaylang=en&categoryid=2
http://www.microsoft.com/downloads/en/resultsForCategory.aspx?displaylang=en&categoryid=2
http://www.microsoft.com/downloads/en/resultsForCategory.aspx?displaylang=en&categoryid=2

4

ShaderAppearance node is used instead of Appearance node. The
vertexShader field contains VertexShader node. The fragmentShader field

contains FragmentShader node. Detailed description of VertexShader and
FragmentShader nodes is placed below. The material, texture

and textureTransform fields work as in the Appearance node. They define
the visual properties of geometry only in the following cases:

 The DirectX9 renderer is not activated;

 Your hardware has no shader support;

 Vertex or Fragment shaders are not specified or written in the

language which is not supported by the browser.

FillProperties and lineProperties are not yet implemented. If these fields
exist, they are ignored by the browser.

VertexShader

VertexShader {

 exposedField MFString url

 #any number of

 field fieldType fieldName

 eventIn fieldType fieldName

 eventOut fieldType fieldName

 exposedField fieldType fieldName

}

VertexShader node defines a vertex shader for modifying geometry's vertex

values. Url field specifies shader programming language code. The prefix in
the beginning of the url's field value shows the browser what shader

language is used. Hlsl prefix means that High Level Shader Language is
used, cg prefix means that nVidia Cg shading language is used.

This example demonstrates the vertex shader written in the HLSL:

VertexShader {

 url ["hlsl: ..."]

}

Multiple valued url field could contain several different shader programs

simultaneously. A description of order of preference for multiple valued URL
fields may be found in the following document: X3D Specification, 9.2.1,

URLs (http://www.web3d.org/documents/specifications/19775-
1/V3.3/Part01/components/networking.html#URLs)

5

In addition to the url field, any number of different fields could be declared

in the VertexShader node. These fields receive and process events of the

scene.

FragmentShader

FragmentShader {

 exposedField MFString url

 #any number of

 field fieldType fieldName

 eventIn fieldType fieldName

 eventOut fieldType fieldName

 exposedField fieldType fieldName

}

FragmentShader node (more often it is known as a pixel shader) defines a
pixel shader for modifying geometry's pixel values. All the fields of the

FragmentShader have the same syntax as VertexShader's fields.

More detailed information about shaders can be found in the following
documents:

 Microsoft DirectX 9 SDK:
o Programmable HLSL Shaders (https://msdn.microsoft.com/en-

us/library/bb509561(v=vs.85).aspx)

 X3D Specification, programmable shaders component, Microsoft High
Level Shading Language (HLSL) Binding: J.3. Interaction with other

nodes and components
(http://www.web3d.org/documents/specifications/19775-

1/V3.2/Part01/components/shaders.html)

CompositeTexture

The CompositeTexture3D and CompositeTexture2D nodes allow for adding
composite textures to the 3D scene. You must have DirectX 9.0c installed

and activated DirectX renderer with Auto or Concorde DX9 option in
Cortona3D Viewer.

CompositeTexture3D

EXTERNPROTO CompositeTexture3D [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children NULL

 exposedField SFInt32 pixelWidth -1

 exposedField SFInt32 pixelHeight -1

 exposedField SFBool repeatS TRUE

 exposedField SFBool repeatT TRUE

 exposedField SFNode background NULL

6

 exposedField SFNode fog NULL

 exposedField SFNode navigationInfo NULL

 exposedField SFNode viewpoint NULL

]

[

 "urn:inet:parallelgraphics.com:cortona:CompositeTexture3D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

 #CompositeTexture3D"

]

The CompositeTexture3D node represents a texture mapped onto a 3D
object that is composed of a 3D scene.

User interaction and the standard user navigation on the textured scene are
disabled.

The children field is the list of 3D children nodes that define the 3D scene

that forms the texture map.

The addChildren eventIn specifies a list of nodes that shall be added to the

children field.

The removeChildren eventIn specifies a list of nodes that shall be removed
from the children field.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this
map. The default values result in an undefined size being used. This is a hint

for the content creator to define the quality of the texture mapping.

The background field specifies the Background of the current texture. It may
only contain Background node.

The fog field specifies the Fog node.

The navigationInfo field specifies the NavigationInfo node.The viewpoint field
specifies the Viewpoint node.

The repeatS and repeatT fields specify how the texture wraps in the S and T

directions.

CompositeTexture2D

EXTERNPROTO CompositeTexture2D [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children NULL

 exposedField SFInt32 pixelWidth -1

 exposedField SFInt32 pixelWidth -1

 exposedField SFBool repeatS TRUE

7

 exposedField SFBool repeatT TRUE

 exposedField SFNode background NULL

 exposedField SFNode viewport NULL

]

["urn:inet:parallelgraphics.com:cortona:CompositeTexture2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

 #CompositeTexture2D"

]

The CompositeTexture2D node represents a texture that is composed of a
2D scene, which may be mapped onto another object.

The children field contains a list of 2D children nodes that define the 2D

scene that is to form the texture map.

The addChildren eventIn specifies a list of nodes that shall be added to the

children field.

The removeChildren eventIn specifies a list of nodes that shall be removed
from the children field.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this
map. The default values result in an undefined size being used. This is a hint

for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the
semantics of the Layer2D fields of the same name.

The repeatS and repeatT fields specify how the texture wraps in the S and T
directions.

BumpMap

The BumpMap node specifies bump-effect (illusion of bumps, or variations

in surface depth on an otherwise flat surface) for a 3D object.

EXTERNPROTO BumpMap [

 exposedField SFNode texture

 exposedField SFVec3f direction 0 0 –1 # (-inf,inf)

]

[

 "urn:inet:parallelgraphics.com:cortona:BumpMap"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

BumpMap"

]

8

Fields and events:

 Texture: contains a texture bump map which can be given by the
ImageTexture, PixelTexture, MovieTexture, CubeEnvironment, or

MipMap nodes;

 Direction: specifies the direction of a light source (analogous of the
DirectionalLight node).

Each pixel of a resultant bump texture has grey color: red, green and blue

components of its color are equal. The value of these components is
calculated as follows:

1. The direction vector is transformed to the global coordinates;

2. The obtained vector is scalarly multiplied by the color of the
corresponding pixel of the texture bump map, specified in the texture

field.

If the BumpMap node is used as a value of the textures field of the
AdvancedAppearance node, other fields of this node have the following

default values:

backgroundFactor = FORE_COLOR

foregroundFactor = ZERO

or:

backgroundFactor = ZERO
foregroundFactor = BACK_COLOR

Important: This node is supported by GeForce and latest ATI Radeon video

cards when the DirectX Renderer (Concorde DX7) is chosen, or at computers
with the Pentium IV processor when the R98 Renderer (software renderer) is

selected.

MipMap

The MipMap node specifies a set of texture nodes containing low- and high-
resolution versions of the same texture to be used for texturing geometry.

EXTERNPROTO MipMap [

 exposedField MFNode levels

]

["urn:inet:parallelgraphics.com:cortona:MipMap"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

MipMap"

]

9

Fields and events:

 Levels: contains a set of texture nodes (ImageTexture, PixelTexture,
or MovieTexture), which specify different mip-map levels for an

original texture. The original (most detailed) texture should be
referenced in the first position of the levels field (level zero mip-map).

Every next texture referenced by this field should have dimension (by
each of the sizes) two times less than the previous texture and have

the same format. Otherwise, the next texture is stretched to the
required size and converted to the required format. If any of the levels

is missing, it is generated automatically.

The use of mip-maped textures of different levels reduces the jagged effect
(this effect is observed when the scene contains acutely angled polygons

that disappear into the distance). In most cases, it is recommended to use
automatic mip-mapping that can be enabled through the ‘Use textures mip-

mapping renderer’ option in Cortona. If automatic mip-mapping does not
give the desired effect, the MipMap node should be used.

CubeEnvironment

The CubeEnvironment node specifies an environment cube texture map

shape for simulating reflections on 3D objects in the scene.

EXTERNPROTO CubeEnvironment [

 exposedField SFNode backTexture

 exposedField SFNode bottomTexture

 exposedField SFNode frontTexture

 exposedField SFNode leftTexture

 exposedField SFNode rightTexture

 exposedField SFNode topTexture

]

[

 "urn:inet:parallelgraphics.com:cortona:CubeEnvironment"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

CubeEnvironment"

]

Fields and events:

 Back Texture: specifies the back texture in the cube map shape;

 Bottom Texture: specifies the bottom texture in the cube map

shape;

 Front Texture: specifies the front texture in the cube map shape;

 Left Texture: specifies the left texture in the cube map shape;

10

 Right Texture: specifies the right texture in the cube map shape;

 Top Texture: specifies the right texture in the cube map shape.

Following nodes can be used as values of the above fields: ImageTexture,
PixelTexture, MovieTexture, BumpMap, and MipMap. It is not possible to use

the BumpMap or MipMap nodes as values of the fields if the
CubeEnvironment node is in its turn specified in one of these two nodes.

Important: This node is supported by most video cards when the DirectX

Renderer (Concorde DX7) or OpenGL Renderer is selected. It is strongly

recommended to install the latest version of DirectX and update the video
card driver (from its manufacturer's Website) before viewing VRML scenes

containing this node.

SphereEnvironment

The SphereEnvironment node specifies a spherical environment map for

simulating reflections on 3D objects in the scene.

EXTERNPROTO SphereEnvironment [

 exposedField SFNode texture

]

[

"urn:inet:parallelgraphics.com:cortona:SphereEnvironment"

"http://download.cortona3d.com/public/extensions/extensions.w

rl#SphereEnvironment"

]

Fields and events:

 Texture: specifies texture of a reflecting shape. Can be

ImageTexture, PixelTexture, MovieTexture, BumpMap, or MipMap
node. It is not possible to use the BumpMap or MipMap nodes as

values of the fields if the SphereEnvironment node is in its turn
specified in one of these two nodes.

During the viewer's motion around the 3D object distortions or other

artifacts in the reflection can take place. These problems can be resolved
with the use of the cube environmental mapping.

AdvancedAppearance

The AdvancedAppearance node enables you to use advanced texturing
techniques such as multiple texturing.

11

Node description

AdvancedAppearance {

 exposedField SFNode material NULL

 exposedField MFNode textures []

 exposedField MFString mappingTypes []

 exposedField MFFloat weights [] # [0,

inf)

 exposedField SFFloat materialBlending 0 # [0,

1]

 exposedField MFNode textureTransforms []

 exposedField MFString backgroundFactor []

 exposedField MFString foregroundFactor []

}

 The material field, if specified, contains a Material node.

 The textures field specifies a set of 2D textures for multi-texturing.

The texture field, if specified, contains one of the various types of
texture nodes (ImageTexture, MovieTexture, or PixelTexture). If the

texture node is NULL or the texture field is unspecified, the object that
references this Appearance is not textured.

 The mappingTypes field defines a texture map type. The possible

types are:
"SIMPLE" - ordinary mapping that all VRML browsers support,

"ENVIRONMENT" - this simulates the reflecting surfaces.

When there are several textures with the "SIMPLE" map type, it is
possible to define individual mapping for each texture by using several

sets of texture indexes in the texCoordIndex field of the geometry
node. The texCoordIndex field may contain N * L indexes, where N

is the number of textures with the "SIMPLE" map type, L - the number
of indexes in the coordIndex field.

For textures with the "ENVIRONMENT" map type texture indexes are
not used.

 The weights field specifies a set of weights that are required to mix

different textures. In Cortona 4.0 this field is ignored and

the backgroundFactor and foregroundFactor fields are used for
mixing textures.

 The materialBlending field specifies how to combine textures and
materials on associated geometry. The value of materialBlending

ranges from 0 to 1. If you don't specify any textures (the textures field
is empty) or material (material is NULL), no combination happens. The

weights required for mixing can be computed as:

if(textures.count == 0)

 Wmaterial = 1; // a material is used

12

 else if(material == NULL)

 Wmaterial = 0; // textures are used

 else // textures and material are combined

 Wmaterial = materialBlending.

 The textureTransforms field specifies a set of 2D transformations
that are applied to different textures that are specified in the textures

field. The field, if specified, contains a list of TextureTransform nodes.
Descriptions of the TextureTransform node are provided in the VRML97

specification (see 6.49, TextureTransform).The backgroundFactor
and foreGroundFactor fields specify the sets of factors required to

mix textures.Multi-texturing is implemented by the multi-pass
rendering. On each pass the successive texture from the textures node is

mixed with the color resulting from the previous pass according to the

following formula:

CMT(i) = CB * FB(i) + CF * FF(i), where

 CMT(i) - the color resulting from the given pass,

 i - the texture number in the textures node (the pass

number),

 CB - the pixel color resulting from the previous pass

(CMT(i - 1)), or back color (the frame-buffer contents

before rendering) for the first pass,

 CF - the pixel color of the texture with the number i,

 FB(i) - the factor defined in the backgroundFactor field,

 FF(i) - the factor defined in the foregroundFactor field.

All colors are considered to have four components (RGBA). If there is no
alpha channel (for example, the texture or back color has no alpha), the

alpha value is considered to be 1 (entirely nontransparent color), i.e. the
alpha channel takes part in all calculations equally with the other color

components. The backgroundFactor and foreGroundFactor fields can
take on the following values:

Value Factor

DEFAULT default

ZERO 0

ONE 1

FORE_COLOR CF

INV_FORE_COLOR 1 - CF

FORE_ALPHA AF

INV_FORE_ALPHA 1 - AF

BACK_COLOR CB

INV_BACK_COLOR 1 - CB

BACK_ALPHA AB

INV_BACK_ALPHA 1 - AB

AF - the alpha value resulting from the given pass,
AB - the alpha value resulting from the previous pass or from the back color.

(If there is no alpha channel AB = 1).

13

Only GeForce adapters support the last two values. So for the rest display

adapters the "BACK_ALPHA" value is equivalent to "ONE", and

"INV_BACK_ALPHA" is equivalent to "ZERO".

If the values in the backgroundFactor and foreGroundFactor fields are
not defined or set to "DEFAULT", they are determined by default according

to the texture type (see the table below). The value of CF also depends on
the texture type. If the material is defined (lighting on), the intensity

textures are modulating by the diffuse color of the material. If all textures
have alpha channels, the material transparency is ignored i.e. it is

considered to be 0, and alpha from the textures is used. But if there is at
least one texture without alpha the material transparency modulates the

alpha channel of all textures.

Texture type backgroundFactor

by default

foregroundFacto

r

by default

CF

lighting

on

CF

lighting off

Intensity "ZERO" "ONE" DM * CT CT
Intensity + Alpha "INV_FORE_ALPHA" "FORE_ALPHA" DM * CT CT
RGB "ZERO" "ONE" CT CT
RGB + Alpha "INV_FORE_ALPHA" "FORE_ALPHA" CT CT
CT - is the color of the texture (all components are equal for intensity

textures)
DM - is the diffuse color of the material (the Material.diffuseColor field).

For compatibility with the standard specification, the following is
implemented: if all textures have alpha channels, the material transparency

is ignored i.e. it is considered to be 0, and the alpha from the textures is
used. But if there is at least one texture without alpha the material

transparency modulates the alpha channel of all textures. The AF value is
calculated according to the formula:

 AF = AT * (1 - TM), where

 AT - the alpha value of the texture

 (for 1- and 3-component textures AT = 1)

 TM - the Material.transparency field value

 (or 0 if all textures have the alpha channel)

The color obtained after multi-texturing CMT is processed in the following
way:

Lighting off

The resulting color is calculated by the formula:
C = BM * EM + (1 - BM) * CMT, where

C - is the resulting color of the pixel,

BM - is the coefficient of the material blending (the materialBlending field),
EM - is the emissive color of the material (the Material.emissiveColor

field).

Lighting on

14

The resulting color of the pixel is calculated by the standard formula of the

VRML lighting model where a diffuse factor (ODrgb) is set to the following

color:
ODrgb = BM * DM + (1 - BM) * CMT

The resulting color Ñ is combined with the color resulting from the previous
pass (which is equal to CMT) and with the transparency of Material
(the Material.transparency field) according to the following formula:

(1 - TM) * C + TM * CMT

TextureTransform

The TextureTransform3 node defines a 3D transformation that is applied
to texture coordinates used in environment mapping (3D transformation of

the reflection vector).

EXTERNPROTO TextureTransform3 [

 exposedField SFVec3f center 0 0 0 # (-

inf,inf)

 exposedField SFRotation rotation 0 0 1 0 # [-1

1],(-inf,inf)

 exposedField SFVec3f scale 1 1 1 #

(0,inf)

 exposedField SFRotation scaleOrientation 0 0 1 0 # [-1

1],(-inf,inf)

 exposedField SFVec3f translation 0 0 0 # (-

inf,inf)

]

[

 "urn:inet:parallelgraphics.com:cortona:TextureTransform3"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#TextureTransform3"

]

The fields of the TextureTransform3 node are analogous to the

corresponding fields of the Transforms VRML node.

The TextureTransform3 node can be used as a value of the

textureTransforms field of the AdvancedAppearance node. The texture, to
which the transformation applies, should be specified in the textures field of

the AdvancedAppearance node by the CubeEnvironment or
SphereEnvironment nodes.

SFVec2f Interpolator

15

The Position2Interpolator node linearly interpolates among a list of 2D

vectors. This node allows a dynamic transformation that is applied to texture

coordinates without implementation of the Script node.
Node description:

Position2Interpolator {

 eventIn SFFloat set_fraction

 exposedField MFFloat key []

 exposedField MFVec2f keyValue []

 eventOut SFVec2f value_changed

}

All definitions of the fields are similar to the VRML97 definitions of the
PositionInterpolator node.

Example:

#VRML V2.0 utf8

NavigationInfo {

 type "EXAMINE"

}

Transform {

 rotation 1 1 1 1

 children [

 Shape {

 geometry Box {}

 appearance Appearance {

 texture ImageTexture {

 url "sky01.gif"

}

 textureTransform

 DEF TT TextureTransform {}

 }

 }

]

}

DEF TIS TimeSensor {

 loop TRUE

 cycleInterval 5

}

DEF PI2 Position2Interpolator {

 key [0 1]

 keyValue [0 0, 1 1]

}

ROUTE TIS.fraction_changed

TO PI2.set_fraction

ROUTE PI2.value_changed

TO TT.translation

GradientBackground

16

The GradientBackground allows for creating horizontal or vertical gradient

background that is static relatively to the camera movements.

EXTERNPROTO GradientBackground [

 eventIn SFBool set_bind

 exposedField MFColor color 0,0,0

 exposedField MFFloat colorPosition 0

 exposedField SFString type "LINEAR-

VERTICAL"

 eventOut SFBool isBound

]

[

 "urn:inet:parallelgraphics.com:cortona:GradientBackground"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#GradientBackground"

]

The set_bind field works in the same way as the set_bind field of the
Background node.

The color field specifies two or more colors of the gradient.
The colorPosition field specifies the positions of colors listed in the color field.

If only two colors are used to create the gradient, the colorPosition field is
not necessary. If the value of the colorPosition field is not specified, the

colors are arranged uniformly.
The type field specifies whether the gradient is horizontal or vertical. The

possible values are "LINEAR-VERTICAL" (default) and "LINEAR-
HORIZONTAL".

The isBound field works in the same way as the isBound field of the
Background node.

Geometry

Splines

Cortona spline technology

ParallelGraphics developed spline representation of geometry objects.

Typically, by using VRML97 file format, the faces are used to build curvy

shapes. There are two choices to avoid faceted shading: use many more
faces to approximate the smooth shape, or shade the faces differently so it

looks like you used lots of faces (Gouraud method). However, the spline
objects are geometrically smooth and allow to transform them to any

required quantity of faces to display.

The key benefits from the use of spline objects include:

 The high quality of a smooth surface can be described using VRML.

17

 It is required less computing resources for achievement of high

quality.

 The size of the VRML-file decreases essentially (up to 10 times)

without degradation of surface quality.

 The smooth variation of input parameters results in transformation of
the spline surface that is worth to simplify the creation of realistic

animations.

 The dynamic detailed elaboration provides the balance between
necessary quality and frame-rate.

 The function of quality allows to operate a degree of detailed

elaboration of a surface.

ParallelGraphics offers six new nodes:

 SplineCone
 SplineCylinder

 SplineElevationGrid
 SplineExtrusion

 SplineFaceSet
 SplineSphere

They are based on the standard nodes and expressed in using the VRML
prototyping mechanism (external prototypes). Each new node contains both

the same fields standard VRML node includes and extensions controlling
level of detailed elaboration of a surface. ParallelGraphics' Cortona VRML

client supports the proposed nodes and uses the spline representation for

objects. The simplest way to use spline nodes is that of changing the
appropriate node name. Other browsers interprets these nodes as Cone,

Cylinder, ElevationGrid, Extrusion, FaceSet, and Sphere.

The method of spline representation of geometry objects is based on three-
cubic spline interpolation, which is performed with Cortona VRML client

automatically using incoming polygonal data (control vertices). So a spline
surface includes all control vertices of the polygonal model. While rendering,

a surface is broken down (tessellated) into a set of triangles approximating
the spline surface. To balance between quality and the frame-rate, a surface

curvature and number of triangles are taken into account. Moreover, it's

possible to control the tessellation using the quality function.

ParallelGraphics has also developed the suitable converter for the translation
of standard polygonal objects to the spline analogies.

18

Geometric spline nodes

Each node corresponds to standard VRML node except the fields distance
and quality. All other field definitions are similar to the VRML97 Node

Reference. This section provides a detailed definition of the syntax of
proposed nodes.

SplineCone {

 field SFFloat bottomRadius 1

 field SFFloat height 2

 field SFBool side TRUE

 field SFBool bottom TRUE

 field MFFloat distance 10

 field MFFloat quality [0, 0.75]

}

SplineCylinder {

 field SFBool bottom TRUE

 field SFFloat height 2

 field SFFloat radius 1

 field SFBool side TRUE

 field SFBool top TRUE

 exposedField MFFloat distance 10

 exposedField MFFloat quality [0, 0.75]

}

SplineElevationGrid {

 eventIn MFFloat set_height

 exposedField SFNode color NULL

 exposedField SFNode normal NULL

 exposedField SFNode texCoord NULL

 field MFFloat height []

 field SFBool ccw TRUE

 field SFBool colorPerVertex TRUE

 field SFFloat creaseAngle 0

 field SFBool normalPerVertex TRUE

 field SFBool solid TRUE

 field SFInt32 xDimension 0

 field SFFloat xSpacing 0.0

 field SFInt32 zDimension 0

 field SFFloat zSpacing 0.0

 exposedField MFFloat distance 10

 exposedField MFFloat quality [0, 0.75]

}

SplineExtrusion {

 eventIn MFVec2f set_crossSection

 eventIn MFRotation set_orientation

 eventIn MFVec2f set_scale

 eventIn MFVec3f set_spine

 field SFBool beginCap TRUE

 field SFBool ccw TRUE

19

 field SFBool convex TRUE

 field SFFloat creaseAngle 0

 field MFVec2f crossSection [1 1,

 1 -1,

 -1 -1,

 -1 1,

 1 1]

 field SFBool endCap TRUE

 field MFRotation orientation 0 0 1 0

 field MFVec2f scale 1 1

 field SFBool solid TRUE

 field MFVec3f spine [0 0 0,

 0 1 0]

 field MFFloat distance 10

 field MFFloat quality [0, 0.75]

}

SplineFaceSet {

 eventIn MFInt32 set_colorIndex

 eventIn MFInt32 set_coordIndex

 eventIn MFInt32 set_normalIndex

 eventIn MFInt32 set_texCoordIndex

 exposedField SFNode color NULL

 exposedField SFNode coord NULL

 exposedField SFNode normal NULL

 exposedField SFNode texCoord NULL

 field SFBool ccw TRUE

 field MFInt32 colorIndex []

 field SFBool colorPerVertex TRUE

 field SFBool convex TRUE

 field MFInt32 coordIndex []

 field SFFloat creaseAngle 0

 field MFInt32 normalIndex []

 field SFBool normalPerVertex TRUE

 field SFBool solid TRUE

 field MFInt32 texCoordIndex []

 exposedField MFFloat distance 10

 exposedField MFFloat quality [0, 0.75]

}

SplineSphere {

 field SFFloat radius 1

 exposedField MFFloat distance 10

 exposedField MFFloat quality [0, 0.75]

}

The smoothing surfaces are available only if the field normalPerVertex is set

to TRUE (default value) that corresponds to Gouraud method for polygonal
objects. If a set of 3D surface normal vectors is defined in node (the normal

field), Cortona will use it in generating of a spline surface. If the normal field
is NULL, the browser treats the normals automatically generated, using the

20

creaseAngle field (see VRML97, Node Reference). The resulted spline surface

contains all of vertices defined in node, and normals per vertex coincide with

normals per spline surface at vertices.

The distance and quality fields enable to control the quality of the spline
surface breakdown (triangulation) depending on the distance from the

camera to the center of the object bounding box. The distance field specifies
a set of distances to object. Each distance[i] value corresponds to the

quality[i+1] value. The quality[0] value specifies the triangulation quality at
distance=0. Thus, if the greatest index in the distance field is N, there shall

be N+1 qualities in the quality field.

Let N denotes the greatest index in the distance field. The following

equations define the current quality of the spline surface breakdown:

D <= distance[0]:

Q = quality[0] + (quality[1] - quality[0]) * D / distance[0]

distance[i] < D < distance[i+1]:

Q = quality[i+1] + (quality[i+2] - quality[i+1]) * (D -

distance[i]) / (distance[i+1] - distance[i])

distance[N-1] < D:

Q = quality[N],

where:

D - the distance from the camera to the center of the object bounding box.
Q - the current quality of the spline surface breakdown, ranging from 0 for

the worst quality to 1 for best surface.

NURBS

NURBS in Cortona

Extending VRML standard ParallelGraphics implemented support for a

mathematical model for surfaces known as NURBS for Cortona VRML client
1.5+. With NURBS geometry, users can model complex sculptured shapes

faster, more accurately, and with fewer surfaces.

For example, NURBS geometry makes it possible to treat the hood of an

automobile or the wing of an airplane as a single surface and create more
realistic shapes of human bodies.

21

With NURBS it is easier to create virtual worlds in VRML with smooth

surfaces and reduced download size of VRML files because of the compact

NURBS description at once.

Geometric NURBS node

This description corresponds to NURBS Extension for VRML97 Discussion &
Node proposal 12 March, 1999 by Blaxxun interactive except the fields
distance, quality, uTessellation, vTessellation, and texCoord.

NurbsSurface {

 field SFInt32 uDimension 0 #[0, inf)

 field SFInt32 vDimension 0 #[0, inf)

 field MFFloat uKnot [] #(-inf,inf)

 field MFFloat vKnot [] #[2, inf)

 field SFInt32 uOrder 3 #[2, inf)

 field SFInt32 vOrder 3 #[2, inf)

 exposedField MFVec3f controlPoint [] #(-inf,inf)

 exposedField MFFloat weight [] #(0, inf)

 exposedField SFInt32 uTessellation 0 #(-inf,inf)

 exposedField SFInt32 vTessellation 0 #(-inf,inf)

 exposedField SFNode texCoord []

 exposedField SFBool ccw TRUE

 exposedField SFBool solid TRUE

 exposedField MFFloat distance 10

 exposedField MFFloat quality [0, 0.75]

}

 uDimension and vDimension define the number of control points in

the u and v dimensions.

 uOrder and vOrder define the order of surface. From a mathematical
point of view, the surface is defined by polynomials of the degree

order-1.

The order of the curves uOrder and vOrder must be greater or equal to
2. An implementation may limit uOrder and vOrder to a certain

number. The most common orders are 3 (quadratic polynomial) and 4
(cubic polynomial), which are sufficient to achieve the desired

curvature in most cases.

The number of control points must be at least equal to the order of the
curve. The order defines the number of adjacent control points that

influence a given control point.

 controlPoint defines a set of control points of dimension uDimension
* vDimension. This set of points defines a mesh similar to the grid of

an ElevationGrid whereas the points do not have a uniform spacing.
Depending on the weight-values and the order this hull is

approximated by the resulting surface. uDimension points define a

22

polyline in u-direction followed by further u-polylines with the v-

parameter in ascending order. The number of control points must be

equal or greater than the order. A closed B-Spline surface can be
specified by repeating the limiting control points.

The control vertex corresponding to the control point P[i, j] on the control

grid is :

P[i,j].x = controlPoints[i + (j * uDimension)].x

P[i,j].y = controlPoints[i + (j * uDimension)].y

P[i,j].z = controlPoints[i + (j * uDimension)].z

P[i,j].w = weight[i + (j * uDimension)]

where 0 <= i < uDimension and 0 <= j < vDimension.

 A weight value that must be greater than zero is assigned to each

controlPoint. The ordering of the values is equivalent to the ordering of
the control point values. If the weight of a control point increased

above 1 the point is closer approximated by the surface. The number
of values must be identical to the number of control points. If the

length of the weight vector is 0, the default weight 1.0 is assumed for
each control point.

 uKnots and vKnots define the knot vector. The number of knots must

be equal to the number of control points plus the order of the curve.
The order must be non-decreasing. By setting successive knot values

equal the degree of continuity is decreased, which implies that the
surface gets edges. If k is the order of the curve, k consecutive knots

at the end or the beginning of the vector let converge the curve to the

last or the first control point respectively. Within the knot vector there
may be not more than k-1 consecutive knots of equal value. If the

length of a knot vector is 0, a default uniform knot vector is computed.

 uTessellation and vTessellation are ignored by Cortona (used for
the compatibility with blaxxun Contact).

 texCoord could provide additional information on how to generate

texture coordinates.
By default, texture coordinates in the unit square are generated

automatically from the parametric subdivision. The texCoord field
specifies per-vertex texture coordinates for the NurbsSurface node. If

texCoord is not NULL, it shall specify a TextureCoordinate node
containing (uDimension)x(vDimension) texture coordinates; one for

each control point, ordered according to a set of control points. The

texture coordinates for each point of the NURBS surface are calculated
the same way as ordinary coordinates, but the array from

TextureCoordinate is used instead of controlPoint.

23

 ccw and solid are defined like in other VRML Geometry nodes. solid

TRUE enables two-sided lighting, the surface is visible from both sides,

and normals are flipped toward the viewer, prior to shading.

 The distance and quality fields enable to control the quality of the
NURBS surface breake down (triangulation) depending on the distance

from the camera to the center of the object bounding box. The
distance field specifies a set of distances to object. Each distance[i]

value is correspond to the quality[i+1] value. The quality[0] value
specifies the triangulation quality at distance=0. Thus, if the greatest

index in the distance field is N, there shall be N+1 qualities in the
quality field.

Let N denotes the greatest index in the distance field. The following
equations define the current quality of the NURBS surface breake

down:

D <= distance[0]:

Q = quality[0] + (quality[1] - quality[0]) * D / distance[0]

distance[i] < D <= distance[i+1]:

Q = quality[i+1] + (quality[i+2] - quality[i+1]) * (D -

distance[i]) / (distance[i+1] - distance[i])

distance[N-1] < D:

Q = quality[N],

where:

D - the distance from the camera to the center of the object bounding
box

Q - the current quality of the spline surface brake down, ranging from
0 for the worst quality to 1 for best surface.

CortonaExtrusion

CortonaExtrusion is an extension of the standard Extrusion node. It allows

for preventing the twist of extrusion models that have complicated spines.
CortonaExtrusion has preventTwist field, which value determines how the Z-

axis of the SCP is computed.

If preventTwist is FALSE, then CortonaExtrusion is identical to the standard
Extrusion. The orientation of each cross-section is calculated from the local

curvature of the spine. In some cases this algorithm can cause undesirable
twists and distortions of the surface.

24

The Z-axis for points other than the first or last is determined as follows:

z = (spine[i+1] - spine[i]) * (spine[i-1] - spine[i])

If preventTwist is TRUE, then the orientation of each cross-section (except

the first one) is approximately parallel to the orientation of the previous
cross-section. This algorithm can help avoid undesirable twists and

distortions.
The Z-axis for points other than the first or last is determined as follows:

z = x[i-1] * y[i]

CortonaExtrusion {

 eventIn MFVec2f set_crossSection

 eventIn MFRotation set_orientation

 eventIn MFVec2f set_scale

 eventIn MFVec3f set_spine

 field SFBool preventTwist FALSE

 field SFBool beginCap TRUE

 field SFBool ccw TRUE

 field SFBool convex TRUE

 field SFFloat creaseAngle 0

 field MFVec2f crossSection [1 1 1 -1 -1 -1 -1 1 1

1]

 field SFBool endCap TRUE

 field MFRotation orientation [0 0 1 0]

 field MFVec2f scale [1 1]

 field SFBool solid TRUE

 field MFVec3f spine [0 0 0 0 1 0]

}

Layers and Rendering

Layers and 2D Nodes

Layers

Layers are transparent rectangular areas on the screen in which VRML
scenes are rendered. These areas always face the viewer.

Layer2D

EXTERNPROTO Layer2D [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children NULL

 exposedField SFVec2f size -1, -1

 exposedField SFNode background NULL

]

25

[

 "urn:inet:parallelgraphics.com:cortona:Layer2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Layer2D"

]

The Layer2D node represents an area where 2D scene is rendered.

Its coordinate system's origin is positioned in the center of the rendering
area, the x-axis is positive to the right and y-axis in positive upwards.

The width of the rendering area represents -1.0 to +1.0 on the x-axis. The
extent of the y-axis in the positive and negative directions is determined by

the aspect ratio of the rendering area so that the unit of distance is equal in
both directions.

The children field may contain any 2D nodes.

The addChildren and removeChildren fields are lists of 2D nodes to add and,
respectively, remove from the layer.

The size parameter specifies width and height of layer rectangle in local
coordinate system.

The background field specifies the Background of the current layer. It may

only contain Background2D node.

Layer3D

EXTERNPROTO Layer3D [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children NULL

 exposedField SFVec2f size -1, -1

 exposedField SFNode background NULL

 exposedField SFNode fog NULL

 exposedField SFNode navigationInfo NULL

 exposedField SFNode viewpoint NULL

]

[

 "urn:inet:parallelgraphics.com:cortona:Layer3D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Layer3D"

]

The Layer3D node represents an area where 3D scene is rendered. Its
coordinate system is the same as used in VRML scene.

26

The children field may contain any 3D nodes.

The addChildren and removeChildren fields are lists of 3D nodes to add and,

respectively, remove from the layer.

The size parameter specifies width and height of layer rectangle in local
coordinate system.

The background field specifies the Background of the current layer. It may

only contain Background node.

The fog field specifies the Fog node.

The navigationInfo field specifies the NavigationInfo node.

The viewpoint field specifies the Viewpoint node.

2D Nodes

2D geometry nodes specify the planar type of geometry nodes. All 2D

geometry nodes are used in the two-dimensional coordinate system. The
origin and direction of x- and y-axes in the 2D coordinate system coincides

with the origin and direction of x- and y-axes in the 3D coordinate system
correspondingly. Z-component is set to null (z=0). As 2D geometry nodes

come from geometry component they are defined in the geometry field of
the Shape node. As all geometry nodes, 2D geometry nodes are affected by

the Appearance node, which describes by the appearance properties
(material and texture) that is applied to the geometry. Only emissivecolor

and transparency of the Material properties are applied to 2D geometry,
other properties have no effect.

2D geometry is mainly implemented (designed) for use in Layer2D nodes.

Circle

EXTERNPROTO Circle [

 field SFFloat radius #1 (0,inf)

]

[

 "urn:inet:parallelgraphics.com:cortona:Circle"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Circle"

]

The Circle node specifies a circle centered at (0,0) in the local 2D coordinate
system. The radius field specifies the radius of the Circle. The value

of radius should be greater than zero.

27

Rectangle

EXTERNPROTO Rectangle [

 field SFVec2f size #2 2 (0,inf)

]

[

 "urn:inet:parallelgraphics.com:cortona:Rectangle"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Rectangle"

]

The Rectangle node specifies a rectangle centered at (0, 0) in the current
local 2D coordinate system and aligned with the local coordinate axes.
The size field specifies the values of the rectangle's sides. Each component

value should be greater than zero.

IndexedLineSet2D

EXTERNPROTO IndexedLineSet2D [

 eventIn MFInt32 set_colorIndex

 eventIn MFInt32 set_coordIndex

 exposedField SFNode color #NULL

 exposedField SFNode coord #NULL

 field MFInt32 colorIndex #[]

 field SFBool colorPerVertex #TRUE

 field MFInt32 coordIndex #[]

]

[

 "urn:inet:parallelgraphics.com:cortona:IndexedLineSet2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#IndexedLineSet2D"

]

The IndexedLineSet2D represents a 2D shape consisting of 2D lines.
The coord field contains the Coordinate2D node that specifies coordinates of

the vertices, from which lines are formed. IndexedFaceSet2D is a 2D
equivalent of the IndexedLineSet node.

IndexedFaceSet2D

EXTERNPROTO IndexedFaceSet2D [

 eventIn MFInt32 set_colorIndex

 eventIn MFInt32 set_coordIndex

 eventIn MFInt32 set_texCoordIndex

 exposedField SFNode color #NULL

 exposedField SFNode coord #NULL

 exposedField SFNode texCoord #NULL

 field MFInt32 colorIndex #[]

 field SFBool colorPerVertex #TRUE

 field SFBool convex #TRUE

 field MFInt32 coordIndex #[]

 field MFInt32 texCoordIndex #[]

28

]

[

 "urn:inet:parallelgraphics.com:cortona:IndexedFaceSet2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#IndexedFaceSet2D"

]

The IndexedFaceSet2D represents a 2D shape consisting of 2D faces.

The coord field contains the Coordinate2D node that specifies coordinates of
the vertices from which faces are formed. IndexedFaceSet2D is a 2D

equivalent of the IndexedFaceSet node.

PointSet2D

EXTERNPROTO PointSet2D [

 exposedField SFNode color #NULL

 exposedField SFNode coord #NULL

]

[

 "urn:inet:parallelgraphics.com:cortona:PointSet2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#PointSet2D"

]

The PointSet2D node specifies a set of 2D points. The coord field contains
the Coordinate2D node. The PointSet2D node is a 2D equivalent of the

PointSet node.

Coordinate2D

EXTERNPROTO Coordinate2D [

 exposedField MFVec2f point #[]

]

[

 "urn:inet:parallelgraphics.com:cortona:Coordinate2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Coordinate2D"

]

The Coordinate2D node specifies a set of 2D coordinates, which is used in

the coord field of PointSet2D, IndexedLineSet2D and IndexedFaceSet2D
nodes.

CoordinateInterpolator2D
EXTERNPROTO CoordinateInterpolator2D [

 eventIn SFFloat set_fraction

 exposedField MFFloat key #[]

 exposedField MFVec2f keyValue #[]

 eventOut MFVec2f value_changed

]

29

[

"urn:inet:parallelgraphics.com:cortona:CoordinateInterpolator2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#CoordinateInterpolator2D"

]

The CoordinateInterpolator2D node is the 2D equivalent of the
CoordinateInterpolator node.

Transform2D

EXTERNPROTO Transform2D [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField SFVec2f center #0,0

 exposedField MFNode children #[]

 exposedField SFFloat rotationAngle #0.0

 exposedField SFVec2f scale #1,1

 exposedField SFFloat scaleOrientation #0.0

 exposedField SFVec2f translation #0,0

]

[

 "urn:inet:parallelgraphics.com:cortona:Transform2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Transform2D"

]

The Transform2D node is a 2D equivalent of the Transform node. It is a
grouping node that allows translation, rotation and scaling of its 2D children.
The translation field specifies translation of the children objects.

The rotationAngle field specifies rotation of the children objects. The centre

of rotation is the point specified in the center field. The scale field specifies
scaling of the children nodes. The scaleOrientation specifies a rotation of the

coordinate system before the scale (to specify scales in arbitrary
orientations). The scaleOrientation field applies only to the scale operation.

Transform2Dex

The Transform2DEx node allows for positioning layers on the screen and

specifying their size in pixels.

Note: The Transform2DEx node should not be used inside Transform and Layer nodes.

EXTERNPROTO Transform2DEx [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField SFVec2f center #0,0

 exposedField MFNode children #[]

 exposedField SFFloat rotationAngle #0.0

 exposedField SFVec2f scale #1,1

30

 exposedField SFFloat scaleOrientation #0.0

 exposedField SFVec2f translation #0,0

 exposedField SFVec2f origin #0,0

 exposedField SFVec2f pixelTranslation #0,0

 exposedField SFVec2f pixelScale #0,0

]

[

 "urn:inet:parallelgraphics.com:cortona:Transform2DEx"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Transform2DEx"

]

The Transform2DEx node is a equivalent of the Transform2D node. It is a
grouping node that allows translation, rotation and scaling of its 2D

children.
The translation field specifies translation of the children objects.

The rotationAngle field specifies rotation of the children objects.
The centre of rotation is the point specified in the center field.

The scale field specifies scaling of the children nodes.
The scaleOrientation specifies a rotation of the coordinate system before the

scale (to specify scales in arbitrary orientations). The scaleOrientation field
applies only to the scale operation.

The origin field specifies the translation of coordinate system.
The pixelTranslation field specifies translation of the children objects in

pixels.
The pixelScale field specifies scaling of the children objects in pixels.

Background2D

EXTERNPROTO Background2D [

 eventIn SFBool set_bind

 exposedField SFColor backColor #0 0 0

 exposedField MFString url #[]

 eventOut SFBool isBound

]

[

"urn:inet:parallelgraphics.com:cortona:Background2D"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#Background2D"

]

Background2D node is a 2D equivalent of the Background node.
Background2D is used only in 2D context, such as Layer2D node.

backColor field specifies the color of the of the background. url field specifies

an image which is applied to the 2D background.

As there is no background stack in the layer
nodes, set_bind and isBound fields are ignored.

31

Panel and HTMLText

Panel

EXTERNPROTO Panel [

 exposedField SFNode source #NULL

 exposedField SFString left #"0"

 exposedField SFString top #"0"

 exposedField SFString right #""

 exposedField SFString bottom #""

 exposedField SFString width #""

 exposedField SFString height #""

 exposedField SFString offsetLeft #""

 exposedField SFString offsetTop #""

 exposedField SFBool sticky #FALSE

 exposedField SFBool enabled #FALSE

 exposedField SFFloat backgroundTransparency #1

 exposedField SFColor backgroundColor #1 1 1

 exposedField SFInt32 borderSize #0

 exposedField SFColor borderColor #1 1 1

 eventOut MFInt32 contentSize

 eventOut SFTime touchTime

 eventOut SFVec2f touchPoint

 eventOut SFString hotspot

 eventOut SFTime hotspotTime

]

[

 "urn:inet:parallelgraphics.com:cortona:Panel"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

Panel"

]

The Panel node represents a rectangular area where HTML text can be
rendered. This area always faces the viewer.
The source field contains an HTMLText node or NULL.

The left, to, right and bottom fields specify panel coordinates. Each
coordinate can be specified in pixels, in percents of width (for the left or

right fields) or height (for the top or bottom) of 3D window size or can be
omitted.

The width and height fields specify the width and height of the panel
correspondingly. Width and height can be specified in pixels, in percents of

3D window size or can be omitted.

The offsetLeft and offsetTop fields specify the offset of the panel's content.
offsetLeft, offsetTop can be specified in pixels, in percents of panel's size or

can be omitted.
The sticky field specifies if the parent coordinate system is used or not.

TRUE value means that left, right, top and bottom are ignored and upper left
corner of the panel is positioned at the origin of the parent transform.

The enabled field specifies if mouse events are processed or not. FALSE
value means that no mouse events are processed; TRUE value means that

all mouse events are processed.

32

The backgroundTransparency field specifies the transparency of the panel's

background.

The backgroundColor field specifies the color of the panel's background.
The borderSize field specifies the size of the panel's border.

The borderColor field specifies the color of the panel's border.
The contentSize event is generated if the size of the panel is changed.

ContentSize event value contains the size of the panel in pixels.
The touchTime and TouchPoint events. If enabled field is set to TRUE,

TouchTime and TouchPoint events are generated when user clicks on the
panel's area.

The hotspot and hotspotTime events. If enabled field is set to TRUE, hotspot
and hotspotTime events are generated when user clicks on the tag. Hotspot contains the href of the corresponding <a> tag
value.

HTMLText

EXTERNPROTO HTMLText [

 exposedField SFString body #""

 exposedField MFInt32 padding #[]

 exposedField SFBool shadow #FALSE

 exposedField SFFloat shadowTransparency #0

 exposedField SFInt32 shadowSize #8

 exposedField MFInt32 shadowOffset #[]

 exposedField SFColor shadowColor #0 0 0

]

[

 "urn:inet:parallelgraphics.com:cortona:HTMLText"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

HTMLText"

]

The HTMLText node represents an HTML text, which can be used in the
Panel node. The Body field contains a string of HTML code. Only p, a, font, b

(strong), i (em), u, br, center tags with the face, size, color attributes are
supported.

The padding field specifies padding in pixels in a form of [top [right [bottom

[left]]]].
The Shadow field specifies if shadow is used or not. FALSE value means that

no shadow is used, TRUE value means that shadow is used.
The ShadowTransparency field specifies the transparency of the shadow.

The ShadowSize field specifies the size of the shadow.
The ShadowOffset field specifies the shadow's offset.

The ShadowColor field specifies the shadow's color.

33

OrderedGroup

EXTERNPROTO OrderedGroup [

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children #[]

 exposedField MFFloat order #[]

]

[

 "urn:inet:parallelgraphics.com:cortona:OrderedGroup"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

OrderedGroup"

]

OrderedGroup node is a grouping node which allows to set the order of the
rendering of the coplanar or close shapes.

As in all grouping nodes, children field specifies a list of children nodes of the

OrderedGroup node, addChildren and removeChildren fields specify the list
of objects that shall be added or, respectively, removed from the

OrderedGroup node.

order field is an array of floating point numbers. Each value of the order field

corresponds to one child from the children field. The child that has the
lowest order value is rendered first. Other children are rendered in

increasing order. The last rendered child is a child with the highest order
value. If the order field is empty, all the children of the OrderedGroup are

rendered in the order, that is specified in the children field, from the first to
the last.

ZGroup

The ZGroup node enables/disables writing children geometry in Z-buffer

and checking Z-buffer during its output.

EXTERNPROTO ZGroup [
 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children []

 field SFVec3f bboxCenter 0 0 0 # (-inf inf)

 field SFVec3f bboxSize -1 -1 -1 # (0, inf) or -

1,-1,-1

 exposedField SFBool write TRUE

 exposedField SFBool check TRUE

 exposedField SFBool writePixelBuffer TRUE
]

[

 "urn:inet:parallelgraphics.com:cortona:ZGroup"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

ZGroup"
]

34

The fields of the ZGroup node, with the exception of the check, and write

fields, are analogous to the corresponding fields of the Group VRML node.

Fields and events:

Check field specifies whether Z-buffer is checked during rendering of

geometry specified in the children field.

Write field specifies whether the children geometry should be written to Z-

buffer.

WritePixelBuffer field specifies whether the children geometry should be
written to pixel-buffer. The default value of writePixelBuffer is TRUE.

Text

Three-Dimensional Text

The Text3D node

Incorporate 3D text into your VRML world and format it with any True Type

font installed in your Windows system.

Node description

Text3D {

 exposedField MFString string []

 exposedField SFNode fontStyle NULL

 exposedField MFFloat length [] # [0, inf)

 exposedField SFFloat maxExtent 0 # [0, inf)

 exposedField SFFloat depth 0.1 # [0, inf)

 exposedField SFFloat creaseAngle 0 # [0, inf)

 exposedField SFBool solid TRUE

}

You can incorporate 3D text into your VRML world and format it with any
True Type font installed in your Windows system. The Text3D node specifies

a 3D text string object that is positioned with its middle vertical plane in the
Z=0 plane of the local coordinate system, based on values defined in

the fontStyle field. The Text3D nodes may contain multiple text strings

using the UTF-8 encoding as specified by ISO 10646-1:1993. The text

35

strings are stored in the order in which the text mode characters are to be

produced as defined by the parameters in the FontStyle node. The fields of

the Text3D node, with the exception of depth, creaseAngle and solid, are
analogous to the ones for the Text node.

The depth field contains a SFFloat value that specifies the thickness of each

text string in the local coordinate system.

The creaseAngle field affects how default normals are generated. If the

angle between the geometric normals of two adjacent faces is less than or
equal to the specified value for the crease angle parameter, the edge

between the two adjacent faces is smooth-shaded. Otherwise, the
appearance of a rendered surface is calculated so that a lighting

discontinuity is produced across the edge.

The solid field determines whether one or both sides of each polygon should
be displayed. If solid is FALSE, each polygon of 3D text will be visible

regardless of the viewing direction. If solid is TRUE, this results in one-sided
polygon lighting.

Descriptions of the string, fontStyle, length, and maxExtent fields are
provided in the VRML97 specification (see

http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe
f.html#Text).

Example

#VRML V2.0 utf8

NavigationInfo {

 type "EXAMINE"

}

 DEF MainTransform Transform {

 children Shape {

 geometry Text3D {

 string ["@"] fontStyle FontStyle {

 justify ["MIDDLE", "MIDDLE"]

 family "Times"

 style "BOLD"

 size 4

 }

 depth 0.5

 }

 appearance Appearance {

 material Material {

 diffuseColor .28 .42 .6

 specularColor .32 .4 .4

 ambientIntensity .05

 shininess .54

 emissiveColor .14 .22 .31

 }

 }

36

 }

 }

 DEF MainInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [0 1 0 0 0 1 0 3.14 0 1 0 6.28]

 }

 DEF MainTimer TimeSensor {

 loop TRUE

 cycleInterval 5

 }

 ROUTE MainTimer.fraction_changed TO MainInterpolator.set_fraction

 ROUTE MainInterpolator.value_changed TO MainTransform.rotat

FontStyle

Enhanced support for the FontStyle node

As well as specifying the font family rendering techniques, Cortona 3.1
allows the developer to select a specific font based on the font name. You

can incorporate a flat text string object into your VRML world and format it
with any True Type font installed in your Windows system. For example,

family "Times New Roman".

...

 geometry Text3D {

 string ["ÃŸ"]

 fontStyle FontStyle {

 justify ["MIDDLE", "MIDDLE"]

 family ["Verdana", "Arial", "Helvetica"]

 language "238"

 style "BOLD"

 size 4

 }

 creaseAngle 1.5

 depth 0.5

 }

...

The language field provides a proper language attribute of the text string.
The following table represents codes for the representation of names of

languages that Cortona supports. Both two-letter symbol and character set
specify the language to use:

Two-letter
symbol

MS Charset MS Charset Name Language

"ar" "178" ARABIC_CHARSET Arabic

"el" "161" GREEK_CHARSET Greek

"he" "177" HEBREW_CHARSET Hebrew

37

"ja" "128" SHIFTJIS_CHARSET Japanese

"ko" "129" HANGUL_CHARSET Korean

"zh" "136" CHINESEBIG5_CHARSET Chinese

"ru" "204" RUSSIAN_CHARSET Russian

"tr" "162" TURKISH_CHARSET Turkish

no "238" EE_CHARSET Eastern Europe

no "2" SIMBOL_CHARSET Symbol fonts

You can also use any truly numerical value for the Microsoft character set

even if it is not listed in the table.

For the multilingual support the string field in the Text node should contain
text strings that are specified in UTF-8.

Mouse and keyboard input

Drag & Drop Handling

DropSensor

The DropSensor node generates events based on input from a pointing

device. Retrieves an object's uniform resource locator (URL) of an object
(resource) dragged to the 3D window.

To texture an object, drag and drop the texture or links (in Netscape
Navigator) onto the box in the 3D window. You can also drag a link to any of
image file from your local drive or Internet.

Node description

DropSensor {

 exposedField SFBool enabled TRUE

 eventOut SFVec3f hitPoint

 eventOut SFVec3f hitNormal

 eventOut SFVec2f hitTexCoord

 eventOut SFTime dropTime

 eventOut MFNode nodeChain

 eventOut MFString url

}

enabled field indicates whether the sensor is currently paying attention to
pointing device input.

hitPoint - the location on the surface of the underlying geometry at which

the primary button of the pointing device was released.

38

hitNormal - the normal at the point given by hitPoint.

hitTexCoord - the texture coordinate at the point given by hitPoint.
dropTime - the time at which the primary button of the pointing device

was released.

nodeChain returns the nodes names from the top-level to the geometry at
which the primary button of the pointing device was released.

url returns the URL for the object (resource) currently dragged to the 3D
window.

Example

#VRML V2.0 utf8

NavigationInfo {

 type "EXAMINE"

}

Transform {

 rotation 1 1 1 1

 children [

 DEF DS DropSensor {}

 Shape {

 geometry Box {}

 appearance Appearance {

 texture DEF IT ImageTexture {}

 material Material {

 shininess 1

 }

 }

 }

]

 }

ROUTE DS.url TO IT.url

Keyboard Input

KbdSensor

The KbdSensor node generates events based on input from a keyboard.

Click anywhere in the 3D window and press any alphanumeric keys.

39

Node description

KbdSensor {

 exposedField SFBool enabled TRUE

 exposedField SFBool isActive FALSE

 eventOut SFInt32 keyDown

 eventOut SFInt32 keyUp

}

enabled indicates whether the sensor is currently paying attention to a
keyboard input. If enabled receives TRUE and isActive is TRUE, the sensor

reacts on input from a keyboard. In this case, the user cannot navigate in
the 3D window using keyboard commands.

isActive allows to control the sensor. If isActive receives a TRUE event, the
sensor processes all keyboard input. Otherwise, the input is treated with a

browser.

keyDown and keyUp events generate 32-bit value containing the character

code of the key that was pressed or released. The primary two bytes specify
the virtual-key code of the nonsystem key, and the secondary - key-state

flags

Example

#VRML V2.0 utf8

NavigationInfo {

 type "EXAMINE"

}

Background {

 skyColor [1 1 1]

}

DEF KS KbdSensor {

 isActive TRUE

}

Shape {

 geometry DEF TXT Text {

 string ["?"]

 fontStyle FontStyle {

 justify ["MIDDLE", "MIDDLE"]

 family "TYPEWRITER"

 style "BOLD" size 4

 }

 }

 appearance Appearance {

 material Material {

 diffuseColor 0.02 0.38 0.61

40

 }

 }

}

DEF SCR Script {

 directOutput TRUE

 eventIn SFInt32 go

 field SFNode TXT USE TXT

 field MFString string [""]

 url ["javascript:

 function go(val,ts){

 string[0]=

 String.fromCharCode(val.toString());

 TXT.string=string;

 }

 "]

 }

ROUTE KS.keyDown TO SCR.go

Movies

FlashMovie

The FlashMovie node enables you to place Flash animations in your VRML

scenes and establish bi-directional interaction between VRML scenes and
Flash animations. Flash Player v.4 or later should be installed on your

computer.

#VRML V2.0 utf8

EXTERNPROTO FlashMovie [

 exposedField SFBool wantMouse # TRUE

 exposedField SFBool wantKeys # TRUE

 exposedField SFBool playing # FALSE

 exposedField SFBool loop # FALSE

 exposedField SFInt32 quality # 0=Low, 1=High,

2=AutoLow, 3=AutoHigh

 exposedField SFInt32 scaleMode # 0=ShowAll,

1=NoBorder, 2=ExactFit

 exposedField SFInt32 alignMode # flags, Left=1,

Right=2, Top=4, Bottom=8

 exposedField SFInt32 frameNum # 0

 exposedField SFInt32 width # 256

 exposedField SFInt32 height # 256

 exposedField SFColor backgroundColor # []

 exposedField MFString url # []

 field SFBool repeatS # TRUE

 field SFBool repeatT # TRUE

 eventIn SFString command #

41

 eventOut SFInt32 readyState # 0=Loading, 1=Uninitialized,

 # 2=Loaded, 3=Interactive,

4=Complete

 eventOut SFInt32 totalFrames #

 eventOut SFInt32 percentLoaded #

 eventOut MFString fsCommand #

]

[

 "urn:ParaGraph:FlashMovie"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

FlashMovie"

]

The key benefits from displaying Flash movies using the FlashMovie node
instead of the MovieTexture node:

 ability to control the playback of Flash movies from VRML scenes by

starting or stopping animations, or by specifying frame numbers;

 direct access from VRML scenes to the basic properties of Flash
movies, such as quality and background color of the movie;

 Flash FSCommand actions generate events in VRML scenes.

The texture field of the Appearance VRML node, and the texture field of the
AdvancedAppearance VRML extension node in Cortona, can reference

FlashMovie node.

Fields and events:

wantKeys determines whether the Flash movie

can receive keyboard events from
Cortona window

wantKeys determines whether the Flash movie
can receive keyboard events from

Cortona window

playing specifies whether the Flash movie is
playing

loop specifies whether the Flash movie
continues playing into the next cycle

at the end of the previous cycle. A

Flash movie with loop true at the end
of every cycle continues playing

forever.

quality specifies the level of anti-aliasing to

be used during playback of the Flash
movie. Values: 0=Low, 1=High,

2=AutoLow, 3=AutoHigh

scaleMode determines how the Flash movie is

42

displayed if its size differs from the
size specified by the width/height

properties. Values: 0=ShowAll,
1=NoBorder, 2=ExactFit

alignMode determines how the Flash movie is
aligned if its size differs from the size

specified by the width/height

properties. Values: Left=1, Right=2,
Top=4, Bottom=8

frameNum specifies the number of the current
frame in the Flash movie (the first

frame has a zero number)

width, height indicate the width and height of the
Flash movie texture in pixels

respectively

backgroundColor specifies the background color of the

Flash movie

url defines the URL for the Flash movie
file

repeatS, repeatT specify how the texture wraps in the
S and T directions. They are

analogues of repeatS and repeatT
fields of the VRML ImageTexture

node respectively.

command specifies a string which is transferred
to the Flash movie. This string can be

used for setting values of Flash
movie properties and invoking

methods which have no parameters.

readyState indicates the state of the Flash

movie. Values: 0=Loading,

1=Uninitialized, 2=Loaded,
3=Interactive, 4=Complete.

totalFrames specifies the total number of frames
in the Flash movie.

percentLoaded indicates the percentage of the Flash

movie loading process.

fsCommand specifies MFString strings containing

commands generated in the Flash
movie. This event value has the

following syntax: [command, arg] or
[command1, arg1, command2,

arg2,...]. For more details see the
Controlling the Flash Player entry in

the Macromedia Flash help system.

43

QuickTime MOV Movies as Source for MovieTexture

Use the MovieTexture node to place QuickTime movies in your VRML scene.
Apple QuickTime should be installed on your computer.

#VRML V2.0 utf8

DEF ROTY Transform {

 children

 DEF ROTX Transform {

 children

 DEF ROTZ Transform {

 children [

 DEF TS1 TouchSensor {} Shape {

 appearance Appearance {

 texture MovieTexture {

 loop TRUE

 speed 1

 url "sample.mov"

 }

 }

 geometry Box {size 4 4 4}}

] }

 }}

 DEF ROTYInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [0 1 0 0 0 1 0 3.14 0 1 0 6.28]

}

 DEF ROTZInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [0 0 1 0, 0 0 1 -3.14, 0 0 1 -6.28]

}

 DEF ROTXInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [1 0 0 0, 1 0 0 -3.14, 1 0 0 -6.28]

}

 DEF TIMER TimeSensor {

 loop FALSE cycleInterval 10

}

ROUTE TS1.touchTime TO TIMER.startTime

ROUTE TIMER.fraction_changed TO ROTYInterpolator.set_fraction

ROUTE TIMER.fraction_changed TO ROTZInterpolator.set_fraction

ROUTE TIMER.fraction_changed TO ROTXInterpolator.set_fraction

ROUTE ROTYInterpolator.value_changed TO ROTY.rotation

ROUTE ROTZInterpolator.value_changed TO ROTZ.rotation

ROUTE ROTXInterpolator.value_changed TO ROTX.rotation

44

Flash animations as source for MovieTexture

Flash animations as source for MovieTexture

Use the MovieTexture node to place Flash animations in your VRML scene.

Flash Player v.4 or later should be installed on your computer. The player
can be downloaded at http://www.macromedia.com/downloads/.

Example

 #VRML V2.0 utf8

 NavigationInfo {

 type "EXAMINE"

 }

 Transform {

 rotation 1 1 1 1

 children [

 Shape {

 geometry Box {}

 appearance Appearance {

 texture MovieTexture {

 url "skywrite.swf"

 loop TRUE

 }

 }

 }

]

 }

Animated GIF Files as Source for MovieTexture

Use the MovieTexture node to place animated GIF files in your VRML scene.

#VRML V2.0 utf8

 DEF ROTY Transform {

 children DEF ROTX Transform {

 children DEF ROTZ Transform {

 children Transform {

 rotation 0 0 1 0 children [

 Shape {appearance Appearance {

 texture MovieTexture {

 loop TRUE

 url "banner.gif"

 }

 }

 geometry Box {size 8.8 3.1 0.1}}

45

 DEF TS1 TouchSensor {}]

 }

 }}}

DEF ROTYInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [0 1 0 0 0 1 0 -3.14 0 1 0 -6.28]

}

DEF ROTZInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [0 0 1 0, 0 0 1 -0.8, 0 0 1 0]

}

 DEF ROTXInterpolator OrientationInterpolator {

 key [0 0.5 1]

 keyValue [1 0 0 0, 1 0 0 0.8, 1 0 0 0]

}

 DEF TIMER TimeSensor { enabled TRUE

 loop FALSE cycleInterval 10}

ROUTE TS1.touchTime TO TIMER.startTime

ROUTE TIMER.fraction_changed TO ROTYInterpolator.set_fraction

ROUTE TIMER.fraction_changed TO ROTZInterpolator.set_fraction

ROUTE TIMER.fraction_changed TO ROTXInterpolator.set_fraction

ROUTE ROTYInterpolator.value_changed TO ROTY.rotation

ROUTE ROTZInterpolator.value_changed TO ROTZ.rotation

ROUTE ROTXInterpolator.value_changed TO ROTX.rotation

Behaviour

Object-To-Object Collision Detection Interface

Object-to-object collision detection in a three-dimensional scene is a
procedure of determining whether a given shape, if it were to undergo some

transformation (for example, to be moved, rotated, or scaled), would
encounter an obstacle in the form of another shape. In this document we

describe the ParallelGraphics' ECMAScript interface with the proprietary
implementation of the object-to-object collision detection extension to VRML.

The interface is built around two native ECMAScript
objects, Collidee and Collision. The former acts as a proxy for the shape

that is transformed, bearing the parameters of the transformation matrix
and other relevant data, and the latter describes the point of the shape in

question that came into contact with another shape, in the case of a
collision. Let us examine each object in turn.

46

Object Collidee

Properties:

SFNode/MFNode body
SFVec3f position

SFRotation orientation
SFVec3f scale

SFVec3f size
SFVec3f offset

Collision collision (read-only)

Collidee scenery
SFNode/MFNode ignore

Methods:
Boolean moveTo(SFVec3f position, SFRotation orientation, SFVec3f scale)
(all parameters are optional)

 Body, position, orientation, scale, size and offset
The body property contains a reference to the shape or a list of

shapes that are subjected to collision detection and
the position, orientation, and scale properties store references to

the parameters of the matrix used for transforming the coordinates of
elements of that shape. When the body property is set to null,

the size and offset properties are used to construct an imaginary
shape of parallelepiped with edges parallel to basis vectors, and the

center displaced from the origin of the local coordinate frame.

 Collision
The collision property references an object describing the contact

point of the shape during the last collision.

 Scenery

The scenery property contains a reference to another Collidee object
against which the collision detection is performed; if this property is

set to null, then every shape in the scene is used.

 Ignore
The ignore property is a reference to a shape or a list of shapes that

should not be processed when detecting collision with the current
shape, which itself is considered to be ignored for this purpose.

 moveTo

The moveTo method does the job of collision detection when
transforming the shape that a given Collidee object represents. It

builds two transformation matrices for the shape, one from the
parameters in the Collidee object, and the other from the arguments

received, and checks that no collision occurs at both the initial and

final positions, or at any position interpolated between these two. In
the case of no collision the method copies the values of arguments to

47

the corresponding properties of the Collidee object and returns true.

Otherwise, a transformation matrix corresponding to the position of

the shape when it first comes into contact with an obstruction is
computed, the properties of the Collision object are updated with the

appropriate values, and the method returns false. Also, in this case,
the properties of the Collision object are set to the values describing

the contact point of the shape. It should be noted that for optimization
purposes the values of

the position, orientation and scale properties are never changed by
the moveTo method; instead, the values of the objects that these

properties point to are updated. In practice this makes it possible for
the translation, rotation and scale fields of the corresponding

Transform node to be automatically updated as a side-effect of
a moveTo call.

Object Collision

Properties:

SFVec3f Point (read-only)
SFVec3f Normal (read-only)

Number faceIndex (read-only)
MFNode Path (read-only)

 point and normalThe point property contains the coordinates,
relative to the local coordinate frame of the shape, of the point that

contacts the obstruction, and the normal property gives the
coordinates of the normal vector at that point.

 faceIndexThe faceIndex property indicates which face of an

IndexedFaceSet contains the specified point; this value is not defined
for other geometry nodes.

 PathThe path property is a list of nodes forming a chain in the

hierarchy of nodes starting from the one specified in Collidee's body

property, and ending with the node that contains the face that
collided.

The described interface is, from the programmer's point of view, a filter for

the transformations that are sent through it to the shape that it governs.
This fact makes the use of collision detection more or less transparent to the

author of VRML scenes and even allows for the augmentation of the
Interpolator-based animations with collision-detection techniques.

NavigationInfo

According to the VRML97 Specification, the first three values (zero, first, and

second elements) of the avatarSize MFFloat-typed field of the NavigationInfo

48

node define the avatar's physical dimensions in the scene for the purpose of

collision detection and terrain following. In Cortona VRML Client it is possible

to use further values contained by the avatarSize field to customize
navigation in the EXAMINE navigation mode and specify an advanced

rendering parameter:

 The second triple of values in the field (third, fourth and fifth
elements) sets an arbitrary position of the center of scene rotation in

the EXAMINE navigation mode, its x, y, and z coordinates. (By default,
the center of rotation in this mode in Cortona coincides with the center

of the bounding box of the scene geometry).

 The seventh value in the field (sixth element) specifies the near
visibility limit for the improvement of Z-buffer accuracy. Geometry

before the near visibility limit will not be rendered. The use of this
value is similar to the visibilityLimit field of the NavigationInfo node

whose value limits the rendered part of the scene from outside (outer

visibility limit). The combined use of the two visibility limits can
eliminate Z-buffer problems, which can occur when geometry objects

situated very close and very far from the viewer are simultaneously
rendered in Cortona.

In the example below, the centre of rotation in the EXAMINE mode is moved

to a point with coordinates (3, 3, 0), and the near visibility limit is set to 1
metre.

NavigationInfo {

 type ["EXAMINE"]

 avatarSize [0.25, 1.6, 0.75, 3, 3, 0, 1]

}

Note: the values of the center of rotation and the near visibility limit can be
changed dynamically using scripting capabilities in Cortona.

49

Interpolator Nodes in Cortona

The standard VRML interpolator nodes, such as, ColorInterpolator,
CoordinateInterpolator, NormalInterpolator, OrientationInterpolator,

PositionInterpolator, ScalarInterpolator nodes, and ParallelGraphics
Position2Interpolator node (see SFVec2f Interpolator) are designed for

linear keyframed animation among the lists of SFColor, SFVec3f, SFRotation,
SFFloat and SFVec2f values. These nodes are used as a base for most simple

animations in VRML scenes. The implementation of smooth (non-linear)
animations in VRML is possible only with the use of the Script VRML node.

Apart from being inconvenient for content creators, this results in significant
reduction in performance. If smooth animations are created with the use of

linear interpolators, a larger number of keyframes and therefore
substantially larger size of files result.

Five new ParallelGraphics VRML extension nodes:

 ColorInterpolatorEx,

 OrientationInterpolatorEx,

 PositionInterpolator2Dex,

 PositionInterpolatorEx,

 ScalarInterpolatorEx

were introduced to resolve this problem by extending the capabilities of
existing interpolator nodes of the corresponding types. By setting the value

of the type field of the new interpolator nodes, the content creator can
choose the desired type of interpolation - how the values of a parameter

should be generated between keyframe values. Specifying non-linear
interpolation types allows developers to create smooth and realistic

animations with the use of a minimum number of keyframes.

All the new ParallelGraphics interpolator nodes, except for the

OrientationInterpolatorEx node, share the following common set of fields
and semantics:

eventIn SFFloat set_fraction

exposedField MFFloat key [...]

exposedField MF<type> keyValue [...]

eventOut SF<type> value_changed

exposedField SFString type "LINEAR"

exposedField MFFloat params [0, 0, 0] # (-inf,inf)

50

The type field specifies the type of interpolation used. The following values

of this field are possible: "CONSTANT", "LINEAR", "COSINE", "CUBIC" and

"HERMITE":

Value of
the type field

Interpolation

"CONSTANT" The value remains fixed until the next keyframe. No

interpolation is performed.

"LINEAR" The value changes linearly from the previous to the next
keyframe value. For complex values, each of the

components changes independently of other components.
The speed of the value change (acceleration or

deceleration) is constant throughout the interval. This is
how interpolation is performed by standard VRML

interpolator nodes which the corresponding
ParallelGraphics interpolator nodes extend.

"COSINE" The value changes according to the cosine law in the

interval between the previous and the next keyframe
values. The speed of the value change is minimum (zero)

both at the beginning and end of the interval while the
maximum speed of the value change is achieved in the

middle of the interval.

"CUBIC" The value changes between keyframes values according
to cubic law. Cubic splines provide quick and smooth

interpolation of values.

"HERMITE" The Kochanek-Bartels splines (also known as TCB
splines), which are based on Hermite polynoms, provide

cubic interpolation of the parameter between keyframes
values. The exact type of dependence between the values

of a key and the corresponding keyValue parameter
(interpolation function) can be customized using three

TCB-splines parameters specified by the params field.

Notes (for "CUBIC" and "HERMITE" interpolation types):

 Linear interpolation is used instead of cubic interpolation if the number of keyframes is less than
4.

 If the value of the first keyframe coincides with the value of the last keyframe, the cubic spline is

"closed", i.e. there is no derivative hit of keyValue when interpolating between the last and first
keyframes.

Three values in the params field of the interpolator nodes with extended
capabilities specify the parameters of Kochanek-Bartels splines which

customize the interpolation function:

Parameter Name Description
0 Tension Specifies the bending sharpness of the interpolation

51

function at keyframes (higher tension values

correspond to tighter function curves, lower - to

looser curves).
1 Continuity Specifies the variation in derivative of the

interpolation function from the left and right at
keyframes (zero - transition between adjacent

intervals at keyframes is smooth, non-zero -
intersections of intervals are abrupt).

2 Bias Controls the amount that the interpolation function
bends at each end of the interval between

keyframes (Bias<0 - the function bends more at the
beginning of the interval, Bias>0 - the function

bends more at the end).

Note: if the values of the Continuity and Bias parameters are equal to 0, the Kochanek-Bartels splines are

identical to cardinal splines. If all three parameters are equal to zero (the default value of the params
field), the TSB splines are identical to the Catmull-Rom splines.

The OrientationInterpolatorEx node has only one additional field - type. This
field can take on the following values: "CONSTANT", "LINEAR" (slerp) and

"SPLINE" (squad) that specify constant, linear and cubic spline interpolation
respectively.

Definitions of the other fields and events in the interpolator nodes are similar

to the definitions of the corresponding standard VRML nodes. More
information about interpolators in VRML is available at the Interpolators

nodes topic in the VRML97 Specification (see
http://www.web3d.org/documents/specifications/14772/V2.0/part1/concept

s.html#4.6.8).

ColorInterpolatorEx Node

The ColorInterpolatorEx node interpolates among a list of MFColor values
using a specified interpolation method. This node extends the

standard ColorInterpolator VRML node described at
http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#ColorInterpolator.

EXTERNPROTO ColorInterpolatorEx [

 eventIn SFFloat set_fraction # (-

inf,inf)

 exposedField MFFloat key [] # (-

inf,inf)

 exposedField MFColor keyValue [] # [0,1]

 exposedField MFFloat params [0, 0, 0] # (-

inf,inf)

 exposedField SFString type "LINEAR"

 eventOut SFColor value_changed

]

52

[

 "urn:inet:parallelgraphics.com:cortona:Position2Interpolator"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#ColorInterpolatorEx"

]

The type field defines the interpolation method. The possible values of this

field are "CONSTANT", "LINEAR", "COSINE", "CUBIC" and "HERMITE". In the
case of the Hermite interpolation, the params field specifies three

interpolation parameters: Tension, Continuity and Bias.

Definitions of the other fields and events of the ColorInterpolatorEx node are

similar to the corresponding definitions for the ColorInterpolator VRML node
described at

http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe
f.html#ColorInterpolator.

OrientationInterpolatorEx Node

The OrientationInterpolatorEx node interpolates among a list of rotation
values using a specified interpolation method. This node extends the

standard OrientationInterpolator node described at
http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#OrientationInterpolator.

EXTERNPROTO OrientationInterpolatorEx [

 eventIn SFFloat set_fraction # (-

inf,inf)

 exposedField MFFloat key [] # (-

inf,inf)

 exposedField MFRotation keyValue [] # [-

1,1],(-inf,inf)

 exposedField SFString type "LINEAR"

 eventOut SFRotation value_changed

]

[

"urn:inet:parallelgraphics.com:cortona:OrientationInterpolatorEx

"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#OrientationInterpolatorEx"

]

The type field defines the interpolation method. The possible values of this

field are "CONSTANT", "LINEAR" (slerp) and "SPLINE" (squad):

53

Value of

the type
 field

Interpolation

"CONSTA

NT"

The orientation value remains fixed until the next keyframe. No

interpolation is performed.

"LINEAR"

The value of orientation is interpolated uniformly along a geodesic

in the surface of the 3-sphere between the previous and the next

keyframe values. This method is often referred to as SLERP
(Spherical-Linear intERPolation). That is how the interpolation is

made by the OrientationInterpolator node
(http://www.web3d.org/documents/specifications/14772/V2.0/par

t1/nodesRef.html#OrientationInterpolator).

"SPLINE"

The value of orientation is interpolated between keyframe values
using cubic Hermite polynoms. This method is referred to as

SQUAD (Spherical QUADrilateral interpolation). Unlike SLERP, the
transition between adjacent intervals at keyframes is smooth.

Notes (for the "SPLINE" interpolation type):

 Linear interpolation is used instead of cubic interpolation if the number of keyframes is less than
4.

 If the value of the first keyframe coincides with the value of the last keyframe, the cubic spline is

"closed".

Definitions of the other fields and events of the OrientationInterpolatorEx
node are similar to the corresponding definitions for the standard
OrientationInterpolator node described at

http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#OrientationInterpolator.

PositionInterpolator2DEx Node

The PositionInterpolator2DEx node interpolates among a list of SFVec2f
values using a specified interpolation method. This node extends

the ParallelGraphics extension node Position2Interpolator (see SFVec2f
Interpolator section above).

EXTERNPROTO PositionInterpolator2DEx [

 eventIn SFFloat set_fraction # (-

inf,inf)

 exposedField MFFloat key [] # (-

inf,inf)

 exposedField MFVec2f keyValue [] # (-

inf,inf)

 exposedField MFFloat params [0, 0, 0] # (-

inf,inf)

 exposedField SFString type "LINEAR"

54

 eventOut SFVec2f value_changed

]

[

"urn:inet:parallelgraphics.com:cortona:PositionInterpolator2DEx"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#PositionInterpolator2DEx"

]

The type field defines the interpolation method. The possible values of this
field are "CONSTANT", "LINEAR", "COSINE", "CUBIC" and "HERMITE". In the

case of the Hermite interpolation, the params field specifies three

interpolation parameters: Tension, Continuity and Bias.

Definitions of the other fields and events of the PositionInterpolator2DEx
node are similar to the corresponding definitions for the ParallelGraphics

extension node Position2Interpolator (see SFVec2f Interpolator section).

PositionInterpolatorEx Node

The PositionInterpolatorEx node interpolates among a list of 3D vectors
using a specified interpolation method. This node extends the

standard PositionInterpolator VRML node described at

http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe
f.html#PositionInterpolator.

EXTERNPROTO PositionInterpolatorEx [

 eventIn SFFloat set_fraction # (-

inf,inf)

 exposedField MFFloat key [] # (-

inf,inf)

 exposedField MFVec3f keyValue [] # (-

inf,inf)

 exposedField MFFloat params [0, 0, 0] # (-

inf,inf)

 exposedField SFString type "LINEAR"

 eventOut SFVec3f value_changed

]

[

"urn:inet:parallelgraphics.com:cortona:PositionInterpolatorEx"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#PositionInterpolatorEx"

]

The type field defines the interpolation method. The possible values of this

field are "CONSTANT", "LINEAR", "COSINE", "CUBIC" and "HERMITE". In the
case of the Hermite interpolation, the params field specifies three

interpolation parameters: Tension, Continuity and Bias.

55

Definitions of the other fields and events of the ColorInterpolatorEx node are
similar to the corresponding definitions for the standard PositionInterpolator

VRML node described at
http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#PositionInterpolator.

ScalarInterpolatorEx Node

The ScalarInterpolatorEx node interpolates among a list of SFFloat values
using a specified interpolation method. This node extends the

standard ScalarInterpolator VRML node described at
http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#ScalarInterpolator.

EXTERNPROTO ScalarInterpolatorEx [

 eventIn SFFloat set_fraction # (-

inf,inf)

 exposedField MFFloat key [] # (-

inf,inf)

 exposedField MFFloat keyValue [] # (-

inf,inf)

 exposedField MFFloat params [0, 0, 0] # (-

inf,inf)

 exposedField SFString type "LINEAR"

 eventOut SFFloat value_changed

]

[

 "urn:inet:parallelgraphics.com:cortona:ScalarInterpolatorEx"

"http://download.cortona3d.com/public/extensions/extensions.wrl

#ScalarInterpolatorEx"

]

The type field defines the interpolation method. The possible values of this
field are "CONSTANT", "LINEAR", "COSINE", "CUBIC" and "HERMITE". In the

case of the Hermite interpolation, the params field specifies three
interpolation parameters: Tension, Continuity and Bias.

Definitions of the other fields and events of the ScalarInterpolatorEx node
are similar to the corresponding definitions for
the standard ScalarInterpolator VRML node described at

http://www.web3d.org/documents/specifications/14772/V2.0/part1/nodesRe

f.html#ScalarInterpolator.

TransformSensor

EXTERNPROTO TransformSensor [

 exposedField SFBool enabled #TRUE

 exposedField SFBool includeViewer #FALSE

56

 eventOut SFVec3f translation_changed

 eventOut SFRotation rotation_changed

 eventOut SFVec3f center_changed

 eventOut SFVec3f scale_changed

 eventOut SFRotation scaleOrientation_changed

 eventOut SFBool transform_changed

]

[

 "urn:inet:parallelgraphics.com:cortona:TransformSensor"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

TransformSensor"

]

The TransformSensor generates events containing any transformations of
the descendant geometry in the global coordinate system.

The includeViewer field specifies if viewer position is used in
TransformSensor fields calculations or not.

The translation_changed event is generated if the translation is changed.
The rotation_changed event is generated if the rotation is changed.

The center_changed event is generated if the center of transform is

changed.
The scale_changed event is generated if the scale is changed.

The scaleOrientation_changed event is generated if the scaleOrientation is
changed.

The transform_changed event is generated if the transform is changed.

ViewportSensor

ViewportSensor node returns size of 3D window in pixels.

EXTERNPROTO ViewportSensor [

 eventOut SFVec2f size_changed

]

[

 "urn:inet:parallelgraphics.com:cortona:ViewportSensor"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

ViewportSensor"

]

The size_changed event is generated if the size of 3D window is changed.

57

X3D Nodes

EventUtilities

These nodes allow authors to handle numerous event-types for interactive
scenes without the use of the Script node.

Each node corresponds to standard VRML node. All field definitions are

similar to the ISO/IEC 19775 Abstract Specification. This section provides a
detailed definition of the syntax of proposed nodes.

BooleanFilter

EXTERNPROTO BooleanFilter [

 eventIn SFBool set_boolean

 eventOut SFBool inputFalse

 eventOut SFBool inputNegate

 eventOut SFBool inputTrue

]

[

 "urn:inet:parallelgraphics.com:cortona:BooleanFilter"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

BooleanFilter"

]

The BooleanFilter node allows routing of boolean values and negation. On

receiving the set_boolean TRUE event, the BooleanFilter node generates
the inputTrue event, and on receiving FALSE, it generates

the inputFalse event. In both cases the BooleanFilter node generates
the inputNegate event, which is the negation of the set_boolean value.

BooleanToggle

EXTERNPROTO BooleanToggle [

 eventIn SFBool set_boolean

 exposedField SFBool toggle #FALSE

]

[

 "urn:inet:parallelgraphics.com:cortona:BooleanToggle"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

BooleanToggle"

]

The BooleanToggle node stores a boolean value in the toggle field and

negates it on receiving of the set_boolean TRUE event.
The set_boolean FALSE event is ignored.

BooleanTrigger

58

EXTERNPROTO BooleanTrigger [

 eventIn SFTime set_triggerTime

 eventOut SFBool triggerTrue

]

[

 "urn:inet:parallelgraphics.com:cortona:BooleanTrigger"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

BooleanTrigger"

]

BooleanTrigger is a node that always generates the triggerTrue TRUE event
on receiving a set_triggerTime event.

IntegerSequencer

EXTERNPROTO IntegerSequencer [

 eventIn SFBool next

 eventIn SFBool previous

 eventIn SFBool set_fraction

 exposedField MFFloat key #[] (-inf,inf)

 exposedField MFInt32 keyValue #[] -1|[1,inf)

 eventOut MFInt32 value_changed

]

[

 "urn:inet:parallelgraphics.com:cortona:IntegerSequencer"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

IntegerSequencer"

]

The IntegerSequencer node generates the value_changed event on receiving
a set_fraction event. The value of the value_changed event is taken from

the keyValue array's element corresponding to the element of the key array
the value of which equals to the value of the set_fraction event.

IntegerTrigger

EXTERNPROTO IntegerTrigger [

 eventIn SFBool set_boolean

 exposedField SFInt32 integerKey #1 | (-inf,inf)

 eventOut SFInt32 triggerValue

]

[

 "urn:inet:parallelgraphics.com:cortona:IntegerTrigger"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

IntegerTrigger"

]

59

On receiving a set_boolean event, the IntegerTrigger node generates
the triggerValue event with the current value of integerKey. This is useful for

connecting environmental events to the Switch node's whichChoice.

TimeTrigger

EXTERNPROTO TimeTrigger [

 eventIn SFBool set_boolean

 eventOut SFTime triggerTime

]

[

 "urn:inet:parallelgraphics.com:cortona:TimeTrigger"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

TimeTrigger"

]

The triggerTime event is generated on receiving a set_boolean event. The
value of triggerTime is the time at which set_boolean is received. The value

of set_boolean is ignored.

Inline Extension

EXTERNPROTO Inline [

 exposedField SFBool load #TRUE

 exposedField MFString url #[] [url or urn]

 exposedField SFVec3f bboxCenter #0 0 0 (-inf,inf)

 exposedField SFVec3f bboxSize #-1 -1 -1 [0,inf) or -1

-1 -1

]

[

 "urn:inet:parallelgraphics.com:cortona:Inline"

"http://download.cortona3d.com/public/extensions/extensions.wrl#

Inline"

]

The load field defines when the Inline scene specified by the url field is
loaded. If the load value is set to TRUE, the Inline scene is loaded
immediately, and if its value is set to FALSE, no action is taken. The default

value of the load field is TRUE. This means that in case of the load field is
not specified, the Inline scene is loaded with the whole scene. The load field

allows to load the Inline scene at any time, simply by sending TRUE event to
it. Sending FALSE event to the load field of the already loaded Inline node

unloads Inline context from the scene.

